スキップして本文へ
都市
東京都
従業員カテゴリー
フルタイム 正社員
就労形態
ハイブリッド(在宅勤務)
転勤可能性
はい
掲載日
23-5月-2025
ジョブID
9440

概要と必要条件

ポジション概要:
 
リードデータサイエンティストは、先進的な分析を活用して、顧客エンゲージメントの理解、インタラクション、そして最適化において革新的なアプローチを推進します。成功する候補者は、主に日本語を用いてビジネスステークホルダーと緊密に連携し、要件と広範なビジネスコンテキストを理解します。 この役割は、データ分析イニシアチブを構想から実装、そして納品までリードすることを含みます。
 
 職務内容:
 • 
ビジネスステークホルダーと連携して要件を収集し、ビジネスコンテキストを理解し、データ駆動型ソリューションを導出します。
 • 
データ分析イニシアチブを計画、実行、高品質の分析ソリューションの提供においてリードし監督します。
 • 
データプラットフォームチームや他のITチームと緊密に協力し、依存関係を特定し、開発プロセスの円滑な進行を確保するためのブロッカーを解消します。
 • 
ビジネス目標と整合する機械学習モデルおよび分析プロジェクトを開発、展開し、管理します。
 • CI/CD
MLOpsAzureや同様のクラウドプラットフォーム、DevOpsを利用して開発および展開プロセスを効率化します。
 • SQL
PythonPandasPySparkAzureMLPowerBIを用いてデータモデルと分析を開発・実装する実践的な専門知識を活用します。
 • 
特に流通、運用、マーケティング分野における金融または保険セクターのドメイン専門知識を活用して、プロジェクトの成功を確保します。
 • 
分析および機械学習イニシアチブのプロジェクト成果物や技術仕様を含む詳細なドキュメントを準備します。
 • 
分析および機械学習の要件、進捗、成果について、プレゼンテーションやレポートを通じてチームメンバーやリーダーシップに効果的にコミュニケーションします。
 • 
倫理ガイドラインおよびコンプライアンス基準を遵守し、AIを責任を持って使用します。
 • 
他の市場のベストプラクティスと方法論を取り入れることにより、分析およびデータソリューションを改善します。
 • 
新しい技術とビジネスニーズに基づいて、新しいソリューションおよび強化案を積極的に提案します。
 
 応募要件:
 
 経験:
 • 5
年以上の高度な分析役割での経験があり、成功したビジネス成果をもたらした実績。
 • 
データサイエンスまたは分析チームの管理におけるリーダーシップ経験。
 


技術的スキル:
• 
定量的方法およびビジネス分析のスキルと強力な問題解決能力。
• 
分類、回帰、クラスタリング、時系列分析、次元削減などの機械学習技術を使用したデータモデルの構築と応用の専門知識。
• Python
およびSQLプログラミングスキル。
• 
特にPowerBIなどのデータ可視化ツールに関する深い理解。
• CI/CD
MLOps、およびAzureなどのクラウドプラットフォームの経験。
• Pandas
PySparkAzureMLなどのデータ分析ツールおよびライブラリの実践的な経験。
• 
流通、運用、マーケティング分野における金融または保険ドメインの背景。
• 
業界トレンドに先んじて、新しいツールや技術(例えば、Generative AI (GenAI))を継続的に学習し、分析能力を向上させます。
 
リーダーシップコンピテンシー:
• 
ドメイン知識をアップグレードし、そのビジネス適用性を評価し続ける意欲。
• 
あらゆるレベルの同僚と関係を築き、信頼を得て影響力を発揮する強力な対人スキル。
• 
多様なオーディエンスに複雑な情報を簡潔に伝える優れたコミュニケーションスキル。
 
教育:
• 
統計学、マーケティングサイエンス、オペレーションリサーチ、計量経済学、機械学習などの定量モデルに焦点を当てた学士号。
• 
同様の分野での上級学位はプラス。データ&分析のコースや専門性。
• 
特にAzure Data ScientistAzure Enterprise Data AnalystAzure Data EngineerAzure認定。
 
言語要件:
• 
日本語:上級
• 
英語:中級
 
追加情報:
この役割には、強い分析的バックグラウンドを持ち、データイニシアチブを推進しながら、クロスファンクショナルチームと効果的に協力する能力が求められます。理想的な候補者は、金融または保険の専門知識、関連するツールの技術力を持ち、複雑なビジネス環境をうまくナビゲートし、インパクトのある分析ソリューションを提供できる能力を持っています。


Position Overview:
 The Lead Data Scientist will drive innovative approaches to understanding, interacting, and optimizing customer engagement by leveraging advanced analytics to derive actionable business insights. The successful candidate will work closely with business stakeholders, primarily in Japanese, to understand their requirements and the broader business context. This role entails leading data analytics initiatives from conception through implementation to delivery.
 
Responsibilities:

  • Collaborate with business stakeholders to gather requirements, understand business context, and derive data-driven solutions.
  • Lead and oversee data analytics initiatives, including planning, execution, and delivery of high-quality analytical solutions.
  • Work closely with the data platform team and other IT teams, identifying dependencies, and resolving blockers to ensure smooth development processes.
  • Develop, deploy, and manage machine learning models and analytics projects, ensuring alignment with business objectives.
  • Utilize CI/CD, MLOps, Azure or similar cloud platforms, and DevOps to streamline development and deployment processes.
  • Apply hands-on expertise with SQL, Python, Pandas, PySpark, AzureML, and PowerBI to develop and implement data models and analytics.
  • Leverage domain expertise in financial or insurance sectors, especially in distribution, operations and marketing, to ensure successful project outcomes.
  • Prepare detailed documentation for analytics and ML initiatives, including project deliverables and technical specifications.
  • Communicate effectively with team members and leadership through presentations and reports detailing analytics and machine learning requirements, progress, and outcomes.
  • Collaborate with business stakeholders to gather requirements, understand business context, and derive data-driven solutions.
  • Lead and oversee data analytics initiatives, including planning, execution, and delivery of high-quality analytical solutions.
  • Work closely with the data platform team and other IT teams, identifying dependencies and resolving blockers to ensure smooth development processes.
  • Develop, deploy, and manage machine learning models and analytics projects, ensuring alignment with business objectives.
  • Utilize CI/CD, MLOps, Azure or similar cloud platforms, and DevOps to streamline development and deployment processes.
  • Apply hands-on expertise with SQL, Python, Pandas, PySpark, AzureML, and PowerBI to develop and implement data models and analytics.
  • Leverage domain expertise in financial or insurance sectors, especially in operations and marketing, to ensure successful project outcomes.
  • Prepare detailed documentation for analytics and ML initiatives, including project deliverables and technical specifications.
  • Ensure the responsible use of AI practices, adhering to ethical guidelines and compliance standards.
  • Employ best practices and methodologies from other markets to improve analytics and data solutions.
  • Proactively propose new solutions and enhancements based on emerging technologies and business needs.
  • Communicate effectively with team members and leadership through presentations and reports detailing analytics and machine learning requirements, progress, and outcomes.
     
     

Requirements:
 
       Experience:

  • 5+ years of experience in advanced analytics roles, delivering successful business outcomes.
  • Proven leadership experience in managing data science or analytics teams.
     
    Technical Skills:
  • Proficiency in quantitative methods and business analytics with strong problem-solving skills.
  • Expertise in building and applying data models using machine learning techniques such as classification, regression, clustering, time-series analysis, and dimensionality reduction.
  • Competent programming skills with Python and SQL.
  • Strong understanding of data visualization tools, particularly PowerBI.
  • Experience with CI/CD, MLOps, and cloud platforms such as Azure for deploying analytics and ML solutions.
  • Hands-on experience with data analytics tools and libraries such as Pandas, PySpark, and AzureML.
  • Background in financial or insurance domains, particularly in distribution, operations and marketing.
  • Continuous learning of new tools and technologies, such as Generative AI (GenAI), to stay ahead of industry trends and enhance analytics capabilities.
     
    Leadership Competencies:
  • Continuous motivation to upgrade domain knowledge and evaluate its business application.
  • Strong interpersonal skills to build relationships, rapport, and influence colleagues at all levels.
  • Excellent communication skills to present and convey complex information concisely to diverse audiences.
     
    Education:
  • Bachelor's degree in a quantitative modeling-focused discipline such as Statistics, Marketing Science, Operations Research, Econometrics, Machine Learning, or a related field.
  • An advanced degree in similar disciplines is a plus. Courses or specialization in data & analytics.
  • Azure certifications, especially Azure Data Scientist, Azure Enterprise Data Analyst, Azure Data Engineer.
     
    Language Requirements:
  • Japanese: Advanced
  • English: Intermediate
     
    Additional Information:
     The role requires a proactive leader with a strong analytical background, capable of driving data initiatives while collaborating effectively with cross-functional teams. The ideal candidate will have financial or insurance expertise, technical prowess with relevant tools, and the ability to navigate complex business environments to deliver impactful analytics solutions.

 

福利厚生

メットライフ生命では、ワークライフバランスと社員の心身の健康を促進する福利厚生を提供しています。社員はフレックスタイム制度、年次有給休暇、特別連続休暇、リフレッシュ休暇等の休暇を利用できます。また、社会保険や団体保険の他、旅行や英会話教室で使える割引も提供しています。柔軟に働けるよう、オフィス勤務と在宅勤務を組み合わせた勤務形態の導入や、短時間勤務制度、また柔軟性のあるドレスコードなども設けています。

メットライフについて

メットライフは、グローバルで展開する金融サービス企業です。個人および法人のお客さまがより確かな未来を築けるよう、保険、年金、社員福利厚生給付、資産管理のサポートを提供しています。1868年に創業したメットライフは、世界40以上の市場で事業を展開し、米国、アジア、中南米、ヨーロッパ、中東において業界をリードしています。
 
メットライフ生命は、日本初の外資系生命保険会社として、1973年2月に国内での営業を開始しました。当社のPurpose「ともに歩んでゆく。よりたしかな未来に向けて。」は、メットライフが誇るグローバルネットワークと世界中のベストプラクティスを活かし、お客さまのニーズに応え、地域社会との信頼関係を築くという信念を表しています